Abstract
AbstractWe say that an uncountable metric space is computably categorical if every two computable structures on this space are equivalent up to a computable isometry. We show that Cantor space, the Urysohn space, and every separable Hilbert space are computably categorical, but the space [0, 1] of continuous functions on the unit interval with the supremum metric is not. We also characterize computably categorical subspaces of ℝn, and give a sufficient condition for a space to be computably categorical. Our interest is motivated by classical and recent results in computable (countable) model theory and computable analysis.
Publisher
Cambridge University Press (CUP)
Reference38 articles.
1. Computable Analysis
2. On Computable Numbers, with an Application to the Entscheidungsproblem;Turing;Proceedings of the London Mathematical Society,1936
3. Effective content of field theory
4. Some geometric and dynamical properties of the Urysohn space
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献