Abstract
AbstractLet A be a non-empty set. A set is said to be stationary in if for every f: [A]<ω → A there exists x ϵ S such that x ≠ A and f“[x]<ω ⊆ x. In this paper we prove the following: For an uncountable cardinal λ and a stationary set S in , if there is a regular uncountable cardinal κ ≤ λ such that {x ϵ S: x ∩ κ ϵ κ} is stationary, then S can be split into κ disjoint stationary subsets.
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献