Dynamic Global Vegetation Models: Searching for the balance between demographic process representation and computational tractability

Author:

Argles Arthur P. K.ORCID,Moore Jonathan R.ORCID,Cox Peter M.ORCID

Abstract

Vegetation is subject to multiple pressures in the 21st century, including changes in climate, atmospheric composition and human land-use. Changes in vegetation type, structure, and function also feed back to the climate through their impact on the surface-atmosphere fluxes of carbon and water. Dynamic Global Vegetation Models (DGVMs), are therefore key component of the latest Earth System Models (ESMs). Model projections for the future land carbon sink still span a wide range, in part due to the difficulty of representing complex ecosystem and biogeochemical processes at large scales (i.e. grid lengths ≈ 100km). The challenge for developers of DGVMs is therefore to find an optimal balance between detailed process representation and the ability to scale-up. We categorise DGVMs into four groups; Individual, Average Area, Two Dimensional Cohort and One Dimensional Cohort models. From this we review popular methods used to represent dynamic vegetation within the context of Earth System modelling. We argue that the minimum level of complexity required to effectively model changes in carbon storage under changing climate and disturbance regimes, requires a representation of tree size distributions within forests. Furthermore, we find that observed size distributions are consistent with Demographic Equilibrium Theory, suggesting that One Dimensional Cohort models with a focus on tree size, offer the best balance between computational tractability and realism for ESM applications.

Funder

Newton Fund

UK Research and Innovation

European Research Council

Horizon 2020

Publisher

Public Library of Science (PLoS)

Reference146 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3