Imbalanced learning: Improving classification of diabetic neuropathy from magnetic resonance imaging

Author:

Teh KevinORCID,Armitage Paul,Tesfaye Solomon,Selvarajah Dinesh,Wilkinson Iain D.

Abstract

One of the fundamental challenges when dealing with medical imaging datasets is class imbalance. Class imbalance happens where an instance in the class of interest is relatively low, when compared to the rest of the data. This study aims to apply oversampling strategies in an attempt to balance the classes and improve classification performance. We evaluated four different classifiers from k-nearest neighbors (k-NN), support vector machine (SVM), multilayer perceptron (MLP) and decision trees (DT) with 73 oversampling strategies. In this work, we used imbalanced learning oversampling techniques to improve classification in datasets that are distinctively sparser and clustered. This work reports the best oversampling and classifier combinations and concludes that the usage of oversampling methods always outperforms no oversampling strategies hence improving the classification results.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference55 articles.

1. Learning from imbalanced data;H He;Ieee T Knowl Data En,2009

2. A comprehensive data level analysis for cancer diagnosis on imbalanced data;S Fotouhi;Journal of biomedical informatics,2019

3. Diabetes incidence in Pima Indians: contributions of obesity and parental diabetes;WC Knowler;American journal of epidemiology,1981

4. FSVM-CIL: fuzzy support vector machines for class imbalance learning;R Batuwita;IEEE Transactions on Fuzzy Systems,2010

5. SMOTE: Synthetic minority over-sampling technique;NV Chawla;J Artif Intell Res,2002

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3