Utility of ctDNA in predicting response to neoadjuvant chemoradiotherapy and prognosis assessment in locally advanced rectal cancer: A prospective cohort study

Author:

Wang YaqiORCID,Yang Lifeng,Bao Hua,Fan XiaojunORCID,Xia Fan,Wan JuefengORCID,Shen Lijun,Guan Yun,Bao Hairong,Wu XueORCID,Xu Yang,Shao YangORCID,Sun Yiqun,Tong Tong,Li Xinxiang,Xu Ye,Cai Sanjun,Zhu JiORCID,Zhang ZhenORCID

Abstract

Background For locally advanced rectal cancer (LARC) patients who receive neoadjuvant chemoradiotherapy (nCRT), there are no reliable indicators to accurately predict pathological complete response (pCR) before surgery. For patients with clinical complete response (cCR), a “Watch and Wait” (W&W) approach can be adopted to improve quality of life. However, W&W approach may increase the recurrence risk in patients who are judged to be cCR but have minimal residual disease (MRD). Magnetic resonance imaging (MRI) is a major tool to evaluate response to nCRT; however, its ability to predict pCR needs to be improved. In this prospective cohort study, we explored the value of circulating tumor DNA (ctDNA) in combination with MRI in the prediction of pCR before surgery and investigated the utility of ctDNA in risk stratification and prognostic prediction for patients undergoing nCRT and total mesorectal excision (TME). Methods and findings We recruited 119 Chinese LARC patients (cT3-4/N0-2/M0; median age of 57; 85 males) who were treated with nCRT plus TME at Fudan University Shanghai Cancer Center (China) from February 7, 2016 to October 31, 2017. Plasma samples at baseline, during nCRT, and after surgery were collected. A total of 531 plasma samples were collected and subjected to deep targeted panel sequencing of 422 cancer-related genes. The association among ctDNA status, treatment response, and prognosis was analyzed. The performance of ctDNA alone, MRI alone, and combining ctDNA with MRI was evaluated for their ability to predict pCR/non-pCR. Ranging from complete tumor regression (pathological tumor regression grade 0; pTRG0) to poor regression (pTRG3), the ctDNA clearance rate during nCRT showed a significant decreasing trend (95.7%, 77.8%, 71.1%, and 66.7% in pTRG 0, 1, 2, and 3 groups, respectively, P = 0.008), while the detection rate of acquired mutations in ctDNA showed an increasing trend (3.8%, 8.3%, 19.2%, and 23.1% in pTRG 0, 1, 2, and 3 groups, respectively, P = 0.02). Univariable logistic regression showed that ctDNA clearance was associated with a low probability of non-pCR (odds ratio = 0.11, 95% confidence interval [95% CI] = 0.01 to 0.6, P = 0.04). A risk score predictive model, which incorporated both ctDNA (i.e., features of baseline ctDNA, ctDNA clearance, and acquired mutation status) and MRI tumor regression grade (mrTRG), was developed and demonstrated improved performance in predicting pCR/non-pCR (area under the curve [AUC] = 0.886, 95% CI = 0.810 to 0.962) compared with models derived from only ctDNA (AUC = 0.818, 95% CI = 0.725 to 0.912) or only mrTRG (AUC = 0.729, 95% CI = 0.641 to 0.816). The detection of potential colorectal cancer (CRC) driver genes in ctDNA after nCRT indicated a significantly worse recurrence-free survival (RFS) (hazard ratio [HR] = 9.29, 95% CI = 3.74 to 23.10, P < 0.001). Patients with detectable driver mutations and positive high-risk feature (HR_feature) after surgery had the highest recurrence risk (HR = 90.29, 95% CI = 17.01 to 479.26, P < 0.001). Limitations include relatively small sample size, lack of independent external validation, no serial ctDNA testing after surgery, and a relatively short follow-up period. Conclusions The model combining ctDNA and MRI improved the predictive performance compared with the models derived from individual information, and combining ctDNA with HR_feature can stratify patients with a high risk of recurrence. Therefore, ctDNA can supplement MRI to better predict nCRT response, and it could potentially help patient selection for nonoperative management and guide the treatment strategy for those with different recurrence risks.

Funder

National Natural Science Foundation of China

Cancer Precision Radiotherapy Spark Program of China International Medical Foundation

Publisher

Public Library of Science (PLoS)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3