Parameters of biliary hydrodynamic injection during endoscopic retrograde cholangio-pancreatography in pigs for applications in gene delivery

Author:

Huang Yuting,Kruse Robert L.,Ding Hui,Itani Mohamad I.,Morrison Jonathan,Wang Zack Z.,Selaru Florin M.,Kumbhari Vivek

Abstract

The biliary system is routinely accessed for clinical purposes via endoscopic retrograde cholangiopancreatography (ERCP). We previously pioneered ERCP-mediated hydrodynamic injection in large animal models as an innovative gene delivery approach for monogenic liver diseases. However, the procedure poses potential safety concerns related mainly to liver or biliary tree injury. Here, we sought to further define biliary hydrodynamic injection parameters that are well-tolerated in a human-sized animal model. ERCP was performed in pigs, and hydrodynamic injection carried out using a novel protocol to reduce duct wall stress. Each pig was subjected to multiple repeated injections to expedite testing and judge tolerability. Different injection parameters (volume, flow rate) and injection port diameters were tested. Vital signs were monitored throughout the procedure, and liver enzyme panels were collected pre- and post-procedure. Pigs tolerated repeated biliary hydrodynamic injections with only occasional, mild, isolated elevation in aspartate aminotransferase (AST), which returned to normal levels within one day post-injection. All other liver tests remained unchanged. No upper limit of volume tolerance was reached, which suggests the biliary tree can readily transmit fluid into the vascular space. Flow rates up to 10 mL/sec were also tolerated with minimal disturbance to vital signs and no anatomic rupture of bile ducts. Measured intrabiliary pressure was up to 150 mmHg, and fluid-filled vesicles were induced in liver histology at high flow rates, mimicking the changes in histology observed in mouse liver after hydrodynamic tail vein injection. Overall, our investigations in a human-sized pig liver using standard clinical equipment suggest that ERCP-guided hydrodynamic injection will be safely tolerated in patients. Future investigations will interrogate if higher flow rates and pressure mediate higher DNA delivery efficiencies.

Funder

Johns Hopkins Hospital GI Core Center Pilot Project

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference36 articles.

1. Translational Advances of Hydrofection by Hydrodynamic Injection;L Sendra;Genes (Basel),2018

2. Hydrodynamic gene delivery in human skin using a hollow microneedle device;M Dul;J Control Release,2017

3. Image-guided, intravascular hydrodynamic gene delivery to skeletal muscle in pigs;K Kamimura;Mol Ther,2010

4. Hydrodynamic Renal Pelvis Injection for Non-viral Expression of Proteins in the Kidney;LE Woodard;J Vis Exp,2018

5. Mechanism of plasmid delivery by hydrodynamic tail vein injection. I. Hepatocyte uptake of various molecules;MG Sebestyén;J Gene Med,2006

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3