Predictive topology refinements in distributed stream processing system

Author:

Hanif Muhammad,Lee ChoonhwaORCID,Helal Sumi

Abstract

Cloud computing has evolved the big data technologies to a consolidated paradigm with SPaaS (Streaming processing-as-a-service). With a number of enterprises offering cloud-based solutions to end-users and other small enterprises, there has been a boom in the volume of data, creating interest of both industry and academia in big data analytics, streaming applications, and social networking applications. With the companies shifting to cloud-based solutions as a service paradigm, the competition grows in the market. Good quality of service (QoS) is a must for the enterprises, as they strive to survive in a competitive environment. However, achieving reasonable QoS goals to meet SLA agreement cost-effectively is challenging due to variation in workload over time. This problem can be solved if the system has the ability to predict the workload for the near future. In this paper, we present a novel topology-refining scheme based on a workload prediction mechanism. Predictions are made through a model based on a combination of SVR, autoregressive, and moving average model with a feedback mechanism. Our streaming system is designed to increase the overall performance by making the topology refining robust to the incoming workload on the fly, while still being able to achieve QoS goals of SLA constraints. Apache Flink distributed processing engine is used as a testbed in the paper. The result shows that the prediction scheme works well for both workloads, i.e., synthetic as well as real traces of data.

Funder

National Research Foundation Korea

Institute of Information & communications Technology Planning & Evaluation

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A streaming data prediction method based on long short-term memory model and grey model;2021 International Conference on Neural Networks, Information and Communication Engineering;2021-10-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3