Abstract
Timely identification of COVID-19 patients at high risk of mortality can significantly improve patient management and resource allocation within hospitals. This study seeks to develop and validate a data-driven personalized mortality risk calculator for hospitalized COVID-19 patients. De-identified data was obtained for 3,927 COVID-19 positive patients from six independent centers, comprising 33 different hospitals. Demographic, clinical, and laboratory variables were collected at hospital admission. The COVID-19 Mortality Risk (CMR) tool was developed using the XGBoost algorithm to predict mortality. Its discrimination performance was subsequently evaluated on three validation cohorts. The derivation cohort of 3,062 patients has an observed mortality rate of 26.84%. Increased age, decreased oxygen saturation (≤ 93%), elevated levels of C-reactive protein (≥ 130 mg/L), blood urea nitrogen (≥ 18 mg/dL), and blood creatinine (≥ 1.2 mg/dL) were identified as primary risk factors, validating clinical findings. The model obtains out-of-sample AUCs of 0.90 (95% CI, 0.87–0.94) on the derivation cohort. In the validation cohorts, the model obtains AUCs of 0.92 (95% CI, 0.88–0.95) on Seville patients, 0.87 (95% CI, 0.84–0.91) on Hellenic COVID-19 Study Group patients, and 0.81 (95% CI, 0.76–0.85) on Hartford Hospital patients. The CMR tool is available as an online application at covidanalytics.io/mortality_calculator and is currently in clinical use. The CMR model leverages machine learning to generate accurate mortality predictions using commonly available clinical features. This is the first risk score trained and validated on a cohort of COVID-19 patients from Europe and the United States.
Funder
National Science Foundation
Publisher
Public Library of Science (PLoS)
Reference30 articles.
1. An interactive web-based dashboard to track COVID-19 in real time;E Dong;Lancet Infect Dis,2020
2. Artificial intelligence and machine learning to fight COVID-19;A Alimadadi;Physiol Genomics,2020
3. Chen T, Guestrin C. XGBoost: A scalable tree boosting system. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016. pp. 785–794.
4. Predicting Mortality Risk in Patients with COVID-19 Using Artificial Intelligence to Help Medical Decision-Making;M Pourhomayoun;medRxiv,2020
5. Development and Validation of a Clinical Risk Score to Predict the Occurrence of Critical Illness in Hospitalized Patients With COVID-19;W Liang;JAMA Intern Med,2020
Cited by
146 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献