Use of artificial intelligence on Electroencephalogram (EEG) waveforms to predict failure in early school grades in children from a rural cohort in Pakistan

Author:

Rasheed Muneera A.ORCID,Chand Prem,Ahmed Saad,Sharif Hamza,Hoodbhoy Zahra,Siddiqui Ayat,Hasan Babar S.

Abstract

Universal primary education is critical for individual academic growth and overall adult productivity of nations. Estimates indicate that 25% of 59 million primary age out of school children drop out and early grade failure is one of the factors. An objective and feasible screening measure to identify at-risk children in the early grades can help to design appropriate interventions. The objective of this study was to use a Machine Learning algorithm to evaluate the power of Electroencephalogram (EEG) data collected at age 4 in predicting academic achievement at age 8 among rural children in Pakistan. Demographic and EEG data from 96 children of a cohort along with their academic achievement in grade 1–2 measured using an academic achievement test of Math and language at the age of 7–8 years was used to develop the machine learning algorithm. K- Nearest Neighbor (KNN) classifier was used on different model combinations of EEG, sociodemographic and home environment variables. KNN model was evaluated using 5 Stratified Folds based on the sensitivity and specificity. In the current dataset, 55% and 74% failed in the mathematics and language test respectively. On testing data across each fold, the mean sensitivity and specificity was calculated. Sensitivity was similar when EEG variables were combined with sociodemographic, and home environment (Math = 58.7%, Language = 66.3%) variables but specificity improved (Math = 43.4% to 50.6% and Language = 32% to 60%). The model requires further validation for EEG to be used as a screening measure with adequate sensitivity and specificity to identify children in their preschool age who may be at high risk of failure in early grades.

Funder

Center for Intervention Sciences in Maternal and Child Health

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference46 articles.

1. UNESCO. UNESCO Education Strategy 2014–2021 2014 [cited 2018 September 9]. http://unesdoc.unesco.org/images/0023/002312/231288e.pdf.

2. Nations U. Sustainable Development Goal 2015 [cited 2018 September 9]. https://sustainabledevelopment.un.org/.

3. statistics UIo. Data for sustainable development goals 2018 [cited 2018 September 9]. http://uis.unesco.org/.

4. UNESCO. “Education for All 2015 National Review Report: Pakistan. 2015.

5. Studies NIoP. Pakistan Demographic and Health Survey 2017–18. 2018.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3