Modeling Emergency Department crowding: Restoring the balance between demand for and supply of emergency medicine

Author:

Ansah John Pastor,Ahmad Salman,Lee Lin Hui,Shen Yuzeng,Ong Marcus Eng Hock,Matchar David BruceORCID,Schoenenberger LukasORCID

Abstract

Emergency Departments (EDs) worldwide are confronted with rising patient volumes causing significant strains on both Emergency Medicine and entire healthcare systems. Consequently, many EDs are in a situation where the number of patients in the ED is temporarily beyond the capacity for which the ED is designed and resourced to manage―a phenomenon called Emergency Department (ED) crowding. ED crowding can impair the quality of care delivered to patients and lead to longer patient waiting times for ED doctor’s consult (time to provider) and admission to the hospital ward. In Singapore, total ED attendance at public hospitals has grown significantly, that is, roughly 5.57% per year between 2005 and 2016 and, therefore, emergency physicians have to cope with patient volumes above the safe workload. The purpose of this study is to create a virtual ED that closely maps the processes of a hospital-based ED in Singapore using system dynamics, that is, a computer simulation method, in order to visualize, simulate, and improve patient flows within the ED. Based on the simulation model (virtual ED), we analyze four policies: (i) co-location of primary care services within the ED, (ii) increase in the capacity of doctors, (iii) a more efficient patient transfer to inpatient hospital wards, and (iv) a combination of policies (i) to (iii). Among the tested policies, the co-location of primary care services has the largest impact on patients’ average length of stay (ALOS) in the ED. This implies that decanting non-emergency lower acuity patients from the ED to an adjacent primary care clinic significantly relieves the burden on ED operations. Generally, in Singapore, there is a tendency to strengthen primary care and to educate patients to see their general practitioners first in case of non-life threatening, acute illness.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3