Abstract
Lifetime distributions are an important statistical tools to model the different characteristics of lifetime data sets. The statistical literature contains very sophisticated distributions to analyze these kind of data sets. However, these distributions have many parameters which cause a problem in estimation step. To open a new opportunity in modeling these kind of data sets, we propose a new extension of half-logistic distribution by using the odd Lindley-G family of distributions. The proposed distribution has only one parameter and simple mathematical forms. The statistical properties of the proposed distributions, including complete and incomplete moments, quantile function and Rényi entropy, are studied in detail. The unknown model parameter is estimated by using the different estimation methods, namely, maximum likelihood, least square, weighted least square and Cramer-von Mises. The extensive simulation study is given to compare the finite sample performance of parameter estimation methods based on the complete and progressive Type-II censored samples. Additionally, a new log-location-scale regression model is introduced based on a new distribution. The residual analysis of a new regression model is given comprehensively. To convince the readers in favour of the proposed distribution, three real data sets are analyzed and compared with competitive models. Empirical findings show that the proposed one-parameter lifetime distribution produces better results than the other extensions of half-logistic distribution.
Publisher
Public Library of Science (PLoS)
Reference37 articles.
1. The Weibull-G family of probability distributions;M. Bourguignon;Journal of data science,2014
2. A new family of distributions: the Kumaraswamy odd log-logistic, properties and applications;M. Alizadeh;Hacettepe University Bulletin of natural sciences and engineering series B: Mathematics and statistics,2015
3. A new useful four-parameter extension of the Gumbel distribution: Properties, regression model and applications using the GAMLSS framework;M. Alizadeh;Communications in Statistics-Simulation and Computation,2019
4. The odd log-logistic Lindley-G family of distributions: properties, Bayesian and non-Bayesian estimation with applications;M. Alizadeh;Computational Statistics,2020
5. A new Weibull-G family of distributions;M. H. Tahir;Hacettepe journal of mathematics and statistics,2016
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献