List-wise learning to rank biomedical question-answer pairs with deep ranking recursive autoencoders

Author:

Yan YanORCID,Zhang Bo-Wen,Li Xu-Feng,Liu Zhenhan

Abstract

Biomedical question answering (QA) represents a growing concern among industry and academia due to the crucial impact of biomedical information. When mapping and ranking candidate snippet answers within relevant literature, current QA systems typically refer to information retrieval (IR) techniques: specifically, query processing approaches and ranking models. However, these IR-based approaches are insufficient to consider both syntactic and semantic relatedness and thus cannot formulate accurate natural language answers. Recently, deep learning approaches have become well-known for learning optimal semantic feature representations in natural language processing tasks. In this paper, we present a deep ranking recursive autoencoders (rankingRAE) architecture for ranking question-candidate snippet answer pairs (Q-S) to obtain the most relevant candidate answers for biomedical questions extracted from the potentially relevant documents. In particular, we convert the task of ranking candidate answers to several simultaneous binary classification tasks for determining whether a question and a candidate answer are relevant. The compositional words and their random initialized vectors of concatenated Q-S pairs are fed into recursive autoencoders to learn the optimal semantic representations in an unsupervised way, and their semantic relatedness is classified through supervised learning. Unlike several existing methods to directly choose the top-K candidates with highest probabilities, we take the influence of different ranking results into consideration. Consequently, we define a listwise “ranking error” for loss function computation to penalize inappropriate answer ranking for each question and to eliminate their influence. The proposed architecture is evaluated with respect to the BioASQ 2013-2018 Six-year Biomedical Question Answering benchmarks. Compared with classical IR models, other deep representation models, as well as some state-of-the-art systems for these tasks, the experimental results demonstrate the robustness and effectiveness of rankingRAE.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3