Recombinant apoptosis inhibitor of macrophage protein reduces delayed graft function in a murine model of kidney transplantation

Author:

Lee Ji Yun,Arumugarajah Shabitha,Lian Dameng,Maehara Natsumi,Haig Aaron R.,Suri Rita S.,Miyazaki Toru,Gunaratnam LakshmanORCID

Abstract

Reperfusion injury following cold and warm ischemia (IRI) is unavoidable during kidney transplantation and contributes to delayed graft function (DGF) and premature graft loss. Death of tubular epithelial cells (TECs) by necrosis during IRI releases pro-inflammatory mediators (e.g. HMGB1), propagating further inflammation (necroinflammation) and tissue damage. Kidney Injury Molecule-1 (KIM-1) is a phagocytic receptor upregulated on proximal TECs during acute kidney injury. We have previously shown that renal KIM-1 protects the graft against transplant associated IRI by enabling TECs to clear apoptotic and necrotic cells, and that recognition of necrotic cells by KIM-1 is augmented in the presence of the opsonin, apoptosis inhibitor of macrophages (AIM). Here, we tested whether recombinant AIM (rAIM) could be used to mitigate transplant associated IRI. We administered rAIM or vehicle control to nephrectomised B6 mice transplanted with a single B6 donor kidney. Compared to grafts in vehicle-treated recipients, grafts from rAIM-treated mice exhibited significantly less renal dysfunction, tubular cell death, tissue damage, tubular obstruction, as well as local and systemic inflammation. Both mouse and human rAIM enhanced the clearance of necrotic cells by murine and human TECs, respectively in vitro. These data support testing of rAIM as a potential therapeutic agent to reduce DGF following kidney transplantation.

Funder

Institute of Nutrition, Metabolism and Diabetes

Kidney Foundation of Canada

Lawson Health Research Institute

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3