Proton-dependent inhibition, inverted voltage activation, and slow gating of CLC-0 Chloride Channel

Author:

Kwon Hwoi Chan,Yu Yawei,Fairclough Robert H.,Chen Tsung-YuORCID

Abstract

CLC-0, a prototype Cl-channel in the CLC family, employs two gating mechanisms that control its ion-permeation pore: fast gating and slow gating. The negatively-charged sidechain of a pore glutamate residue, E166, is known to be the fast gate, and the swinging of this sidechain opens or closes the pore of CLC-0 on the millisecond time scale. The other gating mechanism, slow gating, operates with much slower kinetics in the range of seconds to tens or even hundreds of seconds, and it is thought to involve still-unknown conformational rearrangements. Here, we find that low intracellular pH (pHi) facilitates the closure of the CLC-0’s slow gate, thus generating current inhibition. The rate of low pHi-induced current inhibition increases with intracellular H+concentration ([H+]i)—the time constants of current inhibition by low pHi= 4.5, 5.5 and 6 are roughly 0.1, 1 and 10 sec, respectively, at room temperature. In comparison, the time constant of the slow gate closure at pHi= 7.4 at room temperature is hundreds of seconds. The inhibition by low pHiis significantly less prominent in mutants favoring the slow-gate open state (such as C212S and Y512A), further supporting the fact that intracellular H+enhances the slow-gate closure in CLC-0. A fast inhibition by low pHicauses an apparent inverted voltage-dependent activation in the wild-type CLC-0, a behavior similar to those in some channel mutants such as V490W in which only membrane hyperpolarization can open the channel. Interestingly, when V490W mutation is constructed in the background of C212S or Y512A mutation, the inverted voltage-dependent activation disappears. We propose that the slow kinetics of CLC-0’s slow-gate closure may be due to low [H+]irather than due to the proposed large conformational change of the channel protein. Our results also suggest that the inverted voltage-dependent opening observed in some mutant channels may result from fast closure of the slow gate by the mutations.

Funder

National Institute of General Medical Sciences

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Insights into CLC-0’s Slow-Gating from Intracellular Proton Inhibition;International Journal of Molecular Sciences;2024-07-16

2. Biophysical and Pharmacological Insights to CLC Chloride Channels;Handbook of Experimental Pharmacology;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3