Climate variation during the Holocene influenced the skeletal properties of Chamelea gallina shells in the North Adriatic Sea (Italy)

Author:

Cheli Alessandro,Mancuso Arianna,Azzarone Michele,Fermani Simona,Kaandorp Jaap,Marin Frederic,Montroni DevisORCID,Polishchuk Iryna,Prada Fiorella,Stagioni Marco,Valdré Giovanni,Pokroy Boaz,Falini Giuseppe,Goffredo Stefano,Scarponi DanieleORCID

Abstract

Understanding how marine taxa will respond to near-future climate changes is one of the main challenges for management of coastal ecosystem services. Ecological studies that investigate relationships between the environment and shell properties of commercially important marine species are commonly restricted to latitudinal gradients or small-scale laboratory experiments. This paper aimed to explore the variations in shell features and growth of the edible bivalve Chamelea gallina from the Holocene sedimentary succession to present-day thanatocoenosis of the Po Plain-Adriatic Sea system (Italy). Comparing the Holocene sub-fossil record to modern thanatocoenoses allowed obtaining an insight of shell variations dynamics on a millennial temporal scale. Five shoreface-related assemblages rich in C. gallina were considered: two from the Middle Holocene, when regional sea surface temperatures were higher than today, representing a possible analogue for the near-future global warming, one from the Late Holocene and two from the present-day. We investigated shell biometry and skeletal properties in relation to the valve length of C. gallina. Juveniles were found to be more porous than adults in all horizons. This suggested that C. gallina promoted an accelerated shell accretion with a higher porosity and lower density at the expense of mechanically fragile shells. A positive correlation between sea surface temperature and both micro-density and bulk density were found, with modern specimens being less dense, likely due to lower aragonite saturation state at lower temperature, which could ultimately increase the energetic costs of shell formation. Since no variation was observed in shell CaCO3 polymorphism (100% aragonite) or in compositional parameters among the analyzed horizons, the observed dynamics in skeletal parameters are likely not driven by a diagenetic recrystallization of the shell mineral phase. This study contributes to understand the response of C. gallina to climate-driven environmental shifts and offers insights for assessing anthropogenic impacts on this economic relevant species.

Funder

The Po-Adriatic Source-to-Sink system (PASS): from modernsedimentary processes to millennial-scale stratigraphic architecture

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference63 articles.

1. Variation in brachiopod microstructure and isotope geochemistry under low-pH–ocean acidification conditions;F Ye;Biogeosciences,2019

2. Lowenstam HA, Stephen W. On Biomineralization. On Biomineralization. Oxford University Press; 1989. Available: https://books.google.it/books?hl=it&lr=&id=16znCwAAQBAJ&oi=fnd&pg=PR7&dq=Lowenstam+H,+Weiner+S.+On+biomineralization.+1989.+&ots=7xwCbkZg4G&sig=lP7Cl0JlmME3GCznLVta316j0k0#v=onepage&q=Lowenstam H%2C Weiner S. On biomineralization. 1989.&f=false

3. Biocalcification of Corals and their Response to Global Climate Change;MA Rahman;Iaria XPS,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3