G2Basy: A framework to improve the RNN language model and ease overfitting problem

Author:

Yuwen LuORCID,Chen Shuyu,Yuan Xiaohan

Abstract

Recurrent neural networks are efficient ways of training language models, and various RNN networks have been proposed to improve performance. However, with the increase of network scales, the overfitting problem becomes more urgent. In this paper, we propose a framework—G2Basy—to speed up the training process and ease the overfitting problem. Instead of using predefined hyperparameters, we devise a gradient increasing and decreasing technique that changes the parameters training batch size and input dropout simultaneously by a user-defined step size. Together with a pretrained word embedding initialization procedure and the introduction of different optimizers at different learning rates, our framework speeds up the training process dramatically and improves performance compared with a benchmark model of the same scale. For the word embedding initialization, we propose the concept of “artificial features” to describe the characteristics of the obtained word embeddings. We experiment on two of the most often used corpora—the Penn Treebank and WikiText-2 datasets—and both outperform the benchmark results and show potential towards further improvement. Furthermore, our framework shows better results with the larger and more complicated WikiText-2 corpus than with the Penn Treebank. Compared with other state-of-the-art results, we achieve comparable results with network scales hundreds of times smaller and within fewer training epochs.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference38 articles.

1. Natural Language Processing;J Hirschberg;AT&T Tech J,1988

2. Combination of language models for word prediction: An exponential approach;DC Cavalieri;IEEE Trans Audio Speech Lang Process,2016

3. Xu W, Rudnicky A. Can Artificial Neural Networks Learn Language Models? In: Proceedings of International Conference on Speech and Language Processing. Beijing, China: Speech Communication Press; 2000. p. 202–205.

4. A neural probabilistic language model;Y Bengio;J Mach Learn Res,2003

5. Mnih A, Hinton G. A scalable hierarchical distributed language model. In: Proceedings of the 21st International Conference on Neural Information Processing Systems. NIPS’08. Red Hook, NY, USA: Curran Associates Inc.; 2008. p. 1081–1088.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3