Metabolomics characterizes the metabolic changes of Lonicerae Japonicae Flos under different salt stresses

Author:

Cai ZhichenORCID,Chen Huan,Chen Jiajia,Yang Rong,Zou Lisi,Wang Chengcheng,Chen Jiali,Tan Mengxia,Mei Yuqi,Wei Lifang,Yin Shengxin,Liu Xunhong

Abstract

Salt stress affects the metabolic homeostasis of medicinal plants. However, medicinal plants are sessile organisms that cannot escape from salt stress. They acclimatize themselves to the stress by reprogramming their metabolic pathways. Lonicerae Japonicae Flos (LJF) with strong antioxidant activity is commonly used in traditional Chinese medicine, tea, and beverage. Nevertheless, the variation of integrated metabolites in LJF under different salt stresses remains unclear. In this study, High Performance Liquid Chromatography tandem triple time-of-flight mass spectrometry (HPLC- triple TOF-MS/MS) coupled with multivariate statistical analysis was applied to comparatively investigate the metabolites changes in LJF under different salt stress (0, 100, 200, 300 mM NaCl). Total 47 differential metabolites were screened from 79 metabolites identified in LJF under different salt stress. Low salt-treated group (100 mM NaCl) appeared to be the best group in terms of relative contents (peak areas) of the wide variety in bioactive components. Additionally, the phenylpropanoid pathway, monoterpenoid biosynthesis, glycolysis, TCA cycle, and alkaloid biosynthesis were disturbed in all salt-stress LJF. The results showed that LJF metabolisms were dramatically induced under salt stress and the quality of LJF was better under low salt stress. The study provides novel insights into the quality assessment of LJF under salt stress and a beneficial framework of knowledge applied to improvement the medicinal value of LJF.

Funder

Jiangsu Graduate Scientific Research and Practice Innovation Plan

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference35 articles.

1. Salt stress tolerance of plants;S Yokoi;JIRCAS working report,2002

2. Elucidating the molecular mechanisms mediating plant salt‐stress responses;Y Yang;New Phytoogist,2018

3. Cell signaling during cold, drought, and salt stress;L Xiong;The plant cell,2002

4. Multiple nutrient stresses at intersecting Pacific Ocean biomes detected by protein biomarkers;MA Saito;Science,2015

5. Cold stress and acclimation–what is important for metabolic adjustment;A Janská;Plant Biology,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3