Behavioral structure of users in cryptocurrency market

Author:

Aspembitova Ayana T.ORCID,Feng LingORCID,Chew Lock YueORCID

Abstract

Human behavior as they engaged in financial activities is intimately connected to the observed market dynamics. Despite many existing theories and studies on the fundamental motivations of the behavior of humans in financial systems, there is still limited empirical deduction of the behavioral compositions of the financial agents from a detailed market analysis. Blockchain technology has provided an avenue for the latter investigation with its voluminous data and its transparency of financial transactions. It has enabled us to perform empirical inference on the behavioral patterns of users in the market, which we explore in the bitcoin and ethereum cryptocurrency markets. In our study, we first determine various properties of the bitcoin and ethereum users by a temporal complex network analysis. After which, we develop methodology by combining k-means clustering and Support Vector Machines to derive behavioral types of users in the two cryptocurrency markets. Interestingly, we found four distinct strategies that are common in both markets: optimists, pessimists, positive traders and negative traders. The composition of user behavior is remarkably different between the bitcoin and ethereum market during periods of local price fluctuations and large systemic events. We observe that bitcoin (ethereum) users tend to take a short-term (long-term) view of the market during the local events. For the large systemic events, ethereum (bitcoin) users are found to consistently display a greater sense of pessimism (optimism) towards the future of the market.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference47 articles.

1. Information Cascades in the Laboratory;Lisa R. Anderson;The American Economic Review,1997

2. Herd Behavior in Financial Markets: An Experiment with Financial Market Professionals;Marco Cipriani;Journal of the European Economic Association,2009

3. Herd Behavior in a Laboratory Financial Market;Marco Cipriani and Antonio Guarino;American Economic Review,2005

4. Do the Rich Get Richer? An Empirical Analysis of the Bitcoin Transaction Network;D. Kondor;PLoS ONE,2014

5. Fitness preferential attachment as a driving mechanism in bitcoin transaction network;Ayana Aspembitova;PLoS ONE,2019

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3