Hospital discharge data is not accurate enough to monitor the incidence of postpartum hemorrhage

Author:

Walther DianaORCID,Halfon Patricia,Tanzer RomainORCID,Burnand BernardORCID,Robertson Moira,Vial Yvan,Desseauve DavidORCID,Le Pogam Marie-AnnickORCID

Abstract

Introduction Postpartum hemorrhage remains a leading cause of maternal morbidity and mortality worldwide. Therefore, cumulative incidence of postpartum hemorrhage and severe postpartum hemorrhage are commonly monitored within and compared across maternity hospitals or countries for obstetrical safety improvement. These indicators are usually based on hospital discharge data though their accuracy is seldom assessed. We aimed to measure postpartum hemorrhage and severe postpartum hemorrhage using electronic health records and hospital discharge data separately and compare the detection accuracy of these methods to manual chart review, and to examine the temporal trends in cumulative incidence of these potentially avoidable adverse outcomes. Materials and methods We analyzed routinely collected data of 7904 singleton deliveries from a large Swiss university hospital for a three year period (2014–2016). We identified postpartum hemorrhage and severe postpartum hemorrhage in electronic health records by text mining discharge letters and operative reports and calculating drop in hemoglobin from laboratory tests. Diagnostic and procedure codes were used to identify cases in hospital discharge data. A sample of 334 charts was reviewed manually to provide a reference-standard and evaluate the accuracy of the other detection methods. Results Sensitivities of detection algorithms based on electronic health records and hospital discharge data were 95.2% (95% CI: 92.6% 97.8%) and 38.2% (33.3% to 43.0%), respectively for postpartum hemorrhage, and 87.5% (85.2% to 89.8%) and 36.2% (26.3% to 46.1%) for severe postpartum hemorrhage. Postpartum hemorrhage cumulative incidence based on electronic health records decreased from 15.6% (13.1% to 18.2%) to 8.5% (6.7% to 10.5%) from the beginning of 2014 to the end of 2016, with an average of 12.5% (11.8% to 13.3%). The cumulative incidence of severe postpartum hemorrhage remained at approximately 4% (3.5% to 4.4%). Hospital discharge data-based algorithms provided significantly underestimated incidences. Conclusions Hospital discharge data is not accurate enough to assess the incidence of postpartum hemorrhage at hospital or national level. Instead, automated algorithms based on structured and textual data from electronic health records should be considered, as they provide accurate and timely estimates for monitoring and improvement in obstetrical safety. Furthermore, they have the potential to better code for postpartum hemorrhage thus improving hospital reimbursement.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3