Interactive effects of discharge reduction and fine sediments on stream biofilm metabolism

Author:

Pérez-Calpe Ana VictoriaORCID,Larrañaga Aitor,von Schiller DanielORCID,Elosegi ArturoORCID

Abstract

Discharge reduction, as caused by water diversion for hydropower, and fine sediments deposition, are prevalent stressors that may affect multiple ecosystem functions in streams. Periphytic biofilms play a key role in stream ecosystem functioning and are potentially affected by these stressors and their interaction. We experimentally assessed the interactive effects of discharge and fine sediments on biofilm metabolism in artificial indoor channels using a factorial split-plot design with two explanatory variables: water discharge (20, 39, 62, 141 and 174 cm3 s-1) and fine sediments (no sediment or 1100 mg L-1 of sediments). We incubated artificial tiles for 25 days in an unpolluted stream to allow biofilm colonization, and then placed them into the indoor channels for acclimation for 18 days. Subsequently, we manipulated water discharge and fine sediments and, after 17 days, we measured biofilm chlorophyll-a concentration and metabolism. Water velocity (range, 0.5 to 3.0 cm s-1) and sediment deposition (range, 6.1 to 16.6 mg cm-2) increased with discharge, the latter showing that the effect of increased inputs prevailed over sloughing. In the no-sediment treatments, discharge did not affect biofilm metabolism, but reduced chlorophyll-a. Sediments, probably as a consequence of nutrients released, promoted metabolism of biofilm and chlorophyll-a, which became independent of water discharge. Our results indicate that pulses of fine sediments can promote biofilm algal biomass and metabolism, but show interactive effects with discharge. Although discharge reduction can affect the abundance of basal resources for food webs, its complex interactions with fine sediments make it difficult to forecast the extent and direction of the changes.

Funder

Ministerio de Economía, Industria y Competitividad, Gobierno de España

European Social Fund

Eusko Jaurlaritza

Biscay Province Council

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3