Performance for rotor system of hybrid electromagnetic bearing and elastic foil gas bearing with dynamic characteristics analysis under deep learning

Author:

Du XiangxiORCID,Sun Yanhua

Abstract

The bearing-rotor system is prone to faults during operation, so it is necessary to analyze the dynamic characteristics of the bearing-rotor system to discuss the optimal structure of the convolutional neural network (CNN) in system fault detection and classification. The turbo expander is undertaken as the research object. Firstly, the hybrid magnetic bearing-rotor system is modeled into the form of four stiffness coefficients and four damping coefficients, so as to analyze and explain the dynamic characteristics of the system. Secondly, the ambient pressure is introduced to analyze the dynamic characteristics of the elastic foil gas bearing-rotor system based on the changes in the dynamic stiffness and dynamic damping of the gas bearing. Finally, the CNN is introduced to be applied in the detection of faults of bearing-rotor system through determining the parameters of the constructed CNN. The results show that the displacement of the rotor increases and the stiffness decreases with the acceleration of the speed of the electromagnetic bearing. The maximum displacement of the rotor can reach 135μm, and the maximum stiffness can be reduced to 35×105N/m. Increase of ambient pressure causes enhancement of main stiffness of the gas bearing, and the main damping decreases accordingly. Analysis of the classification accuracy and loss function based on the CNN model shows that the convolution kernel size of 7*1 and the batch size of 128 can realize the best performance of CNN in fault classification. This provides a data support and reference for studying the dynamic characteristics of the bearing-rotor system and for the optimization of CNN structure in fault classification and detection.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference27 articles.

1. Experimental research on structure-borne noise at pulse-width-modulation excitation;J Luznar;Applied acoustics,2018

2. Theory and simulation of linearized force coefficients for active magnetic bearings with multiple magnetic poles;T Fan;Applied computational electromagnetics society journal,2019

3. Slip sliding away: Enigma of large sandy blocks within a gas-bearing mass transport deposit, offshore northwestern Greenland;D R Cox;AAPG bulletin,2020

4. Geology and oil and gas bearing potential of the east Canadian continental margin;A Zabanbark;Oceanology,2019

5. Analysis of unbalanced response of rigid rotor supported by AMBs under coupling dynamic and control methods;G Du;Applied computational electromagnetics society journal,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3