Lag-invariant detection of interactions in spatially-extended systems using linear inverse modeling

Author:

Hindriks RikkertORCID

Abstract

Measurements on physical systems result from the systems’ activity being converted into sensor measurements by a forward model. In a number of cases, inversion of the forward model is extremely sensitive to perturbations such as sensor noise or numerical errors in the forward model. Regularization is then required, which introduces bias in the reconstruction of the systems’ activity. One domain in which this is particularly problematic is the reconstruction of interactions in spatially-extended complex systems such as the human brain. Brain interactions can be reconstructed from non-invasive measurements such as electroencephalography (EEG) or magnetoencephalography (MEG), whose forward models are linear and instantaneous, but have large null-spaces and high condition numbers. This leads to incomplete unmixing of the forward models and hence to spurious interactions. This motivated the development of interaction measures that are exclusively sensitive to lagged, i.e. delayed interactions. The drawback of such measures is that they only detect interactions that have sufficiently large lags and this introduces bias in reconstructed brain networks. We introduce three estimators for linear interactions in spatially-extended systems that are uniformly sensitive to all lags. We derive some basic properties of and relationships between the estimators and evaluate their performance using numerical simulations from a simple benchmark model.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference43 articles.

1. Small-World Brain Networks;DS Bassett;The Neuroscientist,2006

2. Removing zero-lag functional connections can alter EEG-source space networks at rest;J Rizkallah;bioRxiv,2019

3. The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes;G Buzsáki;Nature Reviews Neuroscience,2012

4. Human resting-state electrophysiological networks in the alpha frequency band: Evidence from magnetoencephalographic source imaging;R Hindriks;bioRxiv,2017

5. Magnetoencephalography, instrumentation, and applications to noninvasive studies of the working human brain;M Hämäläinen;Reviews of Modern Physics,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3