Easyreporting simplifies the implementation of Reproducible Research layers in R software

Author:

Righelli DarioORCID,Angelini Claudia

Abstract

During last years “irreproducibility” became a general problem in omics data analysis due to the use of sophisticated and poorly described computational procedures. For avoiding misleading results, it is necessary to inspect and reproduce the entire data analysis as a unified product. Reproducible Research (RR) provides general guidelines for public access to the analytic data and related analysis code combined with natural language documentation, allowing third-parties to reproduce the findings. We developed easyreporting, a novel R/Bioconductor package, to facilitate the implementation of an RR layer inside reports/tools. We describe the main functionalities and illustrate the organization of an analysis report using a typical case study concerning the analysis of RNA-seq data. Then, we show how to use easyreporting in other projects to trace R functions automatically. This latter feature helps developers to implement procedures that automatically keep track of the analysis steps. Easyreporting can be useful in supporting the reproducibility of any data analysis project and shows great advantages for the implementation of R packages and GUIs. It turns out to be very helpful in bioinformatics, where the complexity of the analyses makes it extremely difficult to trace all the steps and parameters used in the study.

Funder

Regione Campania

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference22 articles.

1. Ten Simple Rules for Reproducible Computational Research

2. Recommendations to enhance rigor and reproducibility in biomedical research;JJ Brito;GigaScience,2020

3. Best practice data life cycle approaches for the life sciences;PC Griffin;F1000Research,2018

4. Literate Programming;DE Knuth;The Computer Journal,1984

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Challenges and opportunities in processing NanoString nCounter data;Computational and Structural Biotechnology Journal;2024-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3