Measurement of the adult human midbrain with transcranial ultrasound

Author:

Aoun Karl,Double Kay L.,Pearson-Dennett Verity,Yilmaz Rezzak,Berg Daniela,Todd GabrielleORCID

Abstract

Background Transcranial sonography is increasingly used to aid clinical diagnoses of movement disorders, for example, to identify an enlarged area of substantia nigra echogenicity in patients with Parkinson’s disease. Objective The current study investigated characteristics of the midbrain at the anatomical plane for quantification of substantia nigra echogenicity. METHODS: Area of substantia nigra echogenicity, cross-sectional area of the midbrain, and interpeduncular angle were quantified in two groups of adults aged 18–50 years: 47 healthy non-drug-using controls (control group) and 22 individuals with a history of methamphetamine use (methamphetamine group), a cohort with a high prevalence of enlarged substantia nigra echogenicity and thus risk of Parkinson’s disease. Results In the control group, cross-sectional area of the midbrain (4.47±0.44 cm2) and interpeduncular angle were unaffected by age, sex, or image acquisition side. In the methamphetamine group, cross-sectional midbrain area (4.72±0.60 cm2) and area of substantia nigra echogenicity were enlarged compared to the control group, and the enlargement was sex-dependent (larger in males than females). Whole midbrain area and interpeduncular angle were found to be weak predictors of area of substantia nigra echogenicity after accounting for group and sex. Conclusions History of methamphetamine use is associated with an enlarged midbrain and area of substantia nigra echogenicity, and the abnormality is more pronounced in males than females. Thus, males may be more susceptible to methamphetamine-induced changes to the brainstem, and risk of Parkinson’s disease, than females.

Funder

National Health and Medical Research Council of Australia

Australian Government

University of South Australia

The University of Sydney

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3