Evaluation of anhydrous processing and storage methods of the temperate bacteriophage ɸV10 for integration into foodborne pathogen detection methodologies

Author:

Kanach AndrewORCID,Bottorff Theresa,Zhao Min,Wang JunORCID,Chiu George T. C.,Applegate Bruce

Abstract

Due to the nascency of bacteriophage-based pathogen detection technologies, several practical hurdles stand in the way between providing promising proof-of-concept data and development of robust detection platforms. One such hurdle, and the focus of this work, is the development of methods for transitioning laboratory stocks of bacteriophage into functional, consistent, and shelf-stable delivery methods in commercial detection kits. Research described here was undertaken to evaluate two methods for their ability to store the bacteriophage ɸV10 at ambient temperature without aqueous storage solutions while limiting loss of viability. ɸV10 is a temperate bacteriophage which solely infects the zero-tolerance food adulterant Escherichia coli O157:H7 and has been genetically modified to generate a detectable phenotype in host cells. In order to integrate this reporter bacteriophage into food-borne pathogen detection methodologies, two methods of processing phage suspensions for long-term, ambient storage were evaluated: printing solutions onto pieces of dissolvable paper and lyophilizing suspensions with sucrose. Applying phage to dissolvable paper yielded key attributes to consider when addressing phage viability, however, optimized methodology still resulted in an approximate five-log reduction in titer of viable phage. Lyophilization of ɸV10 with various concentrations of the cryoprotectant molecule, sucrose, yielded losses of approximately 0.3-log after 120 days of storage at 23°C. Liquid storage buffer samples with and without sucrose saw a reduction of viable phage of at least 3.9-log in the same period. Additionally, the ability for ɸV10 to form lysogens in an E. coli O157:H7 host was not negatively affected by lyophilization. Drying ɸV10 at ambient temperature drastically reduces the viability of the phage. However, lyophilizing ɸV10 in the presence of sucrose is an effective method for dehydration and storage of the phage in ambient environmental conditions for an extended time lending to commercial application and integration into foodborne pathogen detection methodologies.

Funder

Agricultural Research Service

USDA - National Institute of Food and Agriculture

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference34 articles.

1. Investigation Report: Factors Potentially Contributing to the Contamination of Romaine Lettuce Implicated in the Three Outbreaks of E. coli O157: H7 During the Fall of 2019;United States Food and Drug Administration;Investig Reports,2020

2. FSIS Directive 10,010.2: Verification Activities for Shiga Toxin-Producing Escherichia coli in Raw Beef Products Rev. 1;United States Department of Agricuture;FSIS Directives.,2020

3. Lysogeny in nature: Mechanisms, impact and ecology of temperate phages;C Howard-Varona;ISME J,2017

4. Impact of spontaneous prophage induction on the fitness of bacterial populations and host-microbe interactions;AM Nanda;J Bacteriol,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3