A novel micropropagation of Lycium ruthenicum and epigenetic fidelity assessment of three types of micropropagated plants in vitro and ex vitro

Author:

Gao Yue,Wang Qin-MeiORCID,An Qinxia,Cui Jianguo,Zhou Yongbin,Qi Xinyu,Zhang Lijie,Li Lujia

Abstract

Lycium ruthenicum is an excellent eco-economic shrub. Numerous researches have been conducted for the function of its fruits but scarcely focused on the somaclonal variation and DNA methylation. An efficient micropropagation protocol from leaves and stems of L. ruthenicum was developed in this study, in which not only the leaf explants but also the stem explants of L. ruthenicum were dedifferentiated and produced adventitious buds/multiple shoots on one type of medium. Notably, the efficient indirect organogenesis of stem explants was independent of exogenous auxin, which is contrary to the common conclusion that induction and proliferation of calli is dependent on exogenous auxin. We proposed that sucrose supply might be the crucial regulator of stem callus induction and proliferation of L. ruthenicum. Furthermore, results of methylation-sensitive amplified polymorphism (MSAP) showed that DNA methylation somaclonal variation (MSV) of CNG decreased but that of CG increased after acclimatization. Three types of micropropagated plants (from leaf calli, stem calli and axillary buds) were epigenetically diverged more from each other after acclimatization and the ex vitro micropropagated plants should be selected to determine the fidelity. In summary, plants micropropagated from axillary buds and leaves of L. ruthenicum was more fidelity and might be suitable for preservation and propagation of elite germplasm. Also, leaf explants should be used in transformation. Meanwhile, plants from stem calli showed the highest MSV and might be used in somaclonal variation breeding. Moreover, one MSV hotspot was found based on biological replicates. The study not only provided foundations for molecular breeding, somaclonal variation breeding, preservation and propagation of elite germplasm, but also offered clues for further revealing novel mechanisms of both stem-explant dedifferentiation and MSV of L. ruthenicum.

Funder

National Natural Science Foundation of China

Scientific Research Fund of Liaoning Provincial Education Department

Opening Project of State Key Laboratory of Tree Genetics and Breeding

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3