Atmospheric modelling of grass pollen rupturing mechanisms for thunderstorm asthma prediction

Author:

Emmerson Kathryn M.ORCID,Silver Jeremy D.,Thatcher Marcus,Wain Alan,Jones Penelope J.,Dowdy Andrew,Newbigin Edward J.,Picking Beau W.,Choi Jason,Ebert Elizabeth,Bannister Tony

Abstract

The world’s most severe thunderstorm asthma event occurred in Melbourne, Australia on 21 November 2016, coinciding with the peak of the grass pollen season. The aetiological role of thunderstorms in these events is thought to cause pollen to rupture in high humidity conditions, releasing large numbers of sub-pollen particles (SPPs) with sizes very easily inhaled deep into the lungs. The humidity hypothesis was implemented into a three-dimensional atmospheric model and driven by inputs from three meteorological models. However, the mechanism could not explain how the Melbourne event occurred as relative humidity was very low throughout the atmosphere, and most available grass pollen remained within 40 m of the surface. Our tests showed humidity induced rupturing occurred frequently at other times and would likely lead to recurrent false alarms if used in a predictive capacity. We used the model to investigate a range of other possible pollen rupturing mechanisms which could have produced high concentrations of SPPs in the atmosphere during the storm. The mechanisms studied involve mechanical friction from wind gusts, electrical build up and discharge incurred during conditions of low relative humidity, and lightning strikes. Our results suggest that these mechanisms likely operated in tandem with one another, but the lightning method was the only mechanism to generate a pattern in SPPs following the path of the storm. If humidity induced rupturing cannot explain the 2016 Melbourne event, then new targeted laboratory studies of alternative pollen rupture mechanisms would be of considerable value to help constrain the parameterisation of the pollen rupturing process.

Funder

Department of Health and Human Services, State Government of Victoria

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3