Towards to understanding the preliminary loss and absorption of nitrogen and phosphorus under different treatments in cotton drip- irrigation in northwest Xinjiang

Author:

Ma HonghongORCID,Pu Shenghai,Li Pan,Niu Xinxiang,Wu Xianglin,Yang Zhiying,Zhu Jingrong,Yang Tao,Hou ZhenanORCID,Ma Xingwang

Abstract

Drip irrigation under plastic mulch is widely used in Xinjiang, Northwest China. It can not only save water, but also reduce nutrient loss and improve fertilizer utilization. However, it is not clear whether the leaching occurs or not, what is the leaching amount? What is the relationship among fertilization, irrigation regimes, loss, cotton absorption, and cotton field under different fertilization and irrigation management under drip irrigation? Studying these issues not only provides reference for the formulation of fertilization and irrigation systems, but also is of great significance for reducing non-point source pollution. A long-term positioning experiment was conducted from 2009 to 2012 in Baotou Lake farm in Korla City, Xinjiang, with drip-irrigated cotton (Gossypium hirsutum L.) under different N fertilizer and irrigation amounts. The treatments were designed comprising Control (CK,0 N, 0 P, and 0 K with an irrigation of 480 mm) and the following three other treatments: (1) Conventional fertilize and irrigation (CON, 357 kg N hm–2, 90 kg P hm–2, 0 kg K hm–2, and irrigation of 480 mm); (2) Conventional fertilization and Optimizing irrigation (OPT, 357 kg N hm–2, 90 kg P hm–2, 62 kg K hm–2, and irrigation of 420 mm); and (3) Optimizing fertilization and irrigation (OPTN, 240 kg N hm–2, 65 kg P hm–2, 62 kg K hm–2, and irrigation of 420 mm). The results found that the leaching would occur in arid area under drip irrigation. The loss of total N, NH4+, P, N and P loss coefficient was higher under conventional fertilize and irrigation treatment while the loss of NO3- was higher under conventional fertilization and optimizing irrigation treatment. The correlations among N, P absorption by cotton, loss of NH4+ and total phosphorus were quadratic function. The total nitrogen loss and cumulative nitrogen application was lineally correlated. The loss of NO3- and cumulative nitrogen application was exponential. The nitrogen and phosphorus absorption by cotton under conventional fertilization and optimizing irrigation treatment was 24.53% and 35.86% higher than that in conventional fertilize and irrigation treatment, respectively. The cotton yield under conventional fertilization and optimizing irrigation treatment obtained higher than that in other three treatments. Therefore, the conventional fertilization and optimizing irrigation treatment was the optimal management of water and fertilizer in our study. These results demonstrate that reasonable water, nitrogen and phosphorus fertilize could not only effectively promote the absorption of nitrogen and phosphorus, but also reduce nitrogen and phosphorus losses under drip fertigation and plastic mulching.

Funder

The National Key Research and Development Program

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference48 articles.

1. Load estimation and source apportionment of nonpoint source nitrogen and phosphorus based on integrated application of SLURP model, ECM, and RUSLE: a case study in the Jinjiang River, China;HY Chen;Environment Monit Assess,2013

2. Phosphorus loss and its estimation in a small watershed of the Yimeng mountainous area, China;ZW Li;Environment Earth Science,2015

3. Research progress of agricultural non-point source pollution;JS Min;J. Huazhong Agric Univ (Social Sci Ed),2016

4. Role of watershed studivision on modeling the effectiveness of best management practices with SWAT;Mazdak Arabi;Journal of the American water resources association,2006

5. Current status of agricultural and rural nonpoint source pollution assessment in China;ED Ongley;Environment. Pollution,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3