On the quantification of local power densities in a new vibration bioreactor

Author:

Valentin DavidORCID,Presas Alexandre,Roehr Charline,Mele Elisa,Biehl ChristophORCID,Heiss Christian,Bosbach Wolfram A.ORCID

Abstract

We investigate the power densities which are obtainable locally in a vibration bioreactor. These reactor systems are of great relevance for research about oncological or antibacterial therapies. Our focus lies on the local liquid pressure caused by resonance vibration in the fluid contained by the reactor’s petri dish. We use for the excitation one piezoelectric patch which offer advantages concerning controllability and reproducibility, when compared to ultrasound. The experimental work is extended by finite element analyses of bioreactor details. The peaks of the vibration response for water, sodium chloride (0.1N Standard solution), and McCoy’s 5A culture medium are in good alignment. Several natural frequencies can be observed. Local power density can reach multiple times the magnitude used in ultrasound studies. Based on the observed local power densities, we are planning future work for the exposure of cell cultures to mechanical vibration.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference35 articles.

1. Experimental-Numerical Design and Evaluation of a Vibration Bioreactor using Piezoelectric Patches;D Valentin;Sensors,2019

2. Accurate determination of the frequency response function of submerged and confined structures by using PZT-patches;A Presas;Sensors (Switzerland),2017

3. Valentin D, Roehr C, Presas A, Heiss C, Bosbach WA. Experimental-numerical design of a bioreactor prototype for cell vibration experiments. 7th International Symposium on Sensor Science (9–11 May 2019). Napoli (Italia); 2019.

4. The Elastic Behaviour of Sintered Metallic Fibre Networks: A Finite Element Study by Beam Theory;WA Bosbach;PLoS One,2015

5. Mechanical bone growth stimulation by magnetic fibre networks obtained through a competent finite element technique;WA Bosbach;Sci Rep,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3