Aggregated LDL turn human macrophages into foam cells and induce mitochondrial dysfunction without triggering oxidative or endoplasmic reticulum stress

Author:

Sanda Gabriela M.,Stancu Camelia S.,Deleanu Mariana,Toma Laura,Niculescu Loredan S.,Sima Anca V.ORCID

Abstract

Uptake of modified lipoproteins by macrophages turns them into foam cells, the hallmark of the atherosclerotic plaque. The initiation and progression of atherosclerosis have been associated with mitochondrial dysfunction. It is known that aggregated low-density lipoproteins (agLDL) induce massive cholesterol accumulation in macrophages in contrast with native LDL (nLDL) and oxidized LDL (oxLDL). In the present study we aimed to assess the effect of agLDL on the mitochondria and ER function in macrophage-derived foam cells, in an attempt to estimate the potential of these cells, known constituents of early fatty streaks, to generate atheroma in the absence of oxidative stress. Results show that agLDL induce excessive accumulation of free (FC) and esterified cholesterol in THP-1 macrophages and determine mitochondrial dysfunction expressed as decreased mitochondrial membrane potential and diminished intracellular ATP levels, without generating mitochondrial reactive oxygen species (ROS) production. AgLDL did not stimulate intracellular ROS (superoxide anion or hydrogen peroxide) production, and did not trigger endoplasmic reticulum stress (ERS) or apoptosis. In contrast to agLDL, oxLDL did not modify FC levels, but stimulated the accumulation of 7-ketocholesterol in the cells, generating oxidative stress which is associated with an increased mitochondrial dysfunction, ERS and apoptosis. Taken together, our results reveal that agLDL induce foam cells formation and mild mitochondrial dysfunction in human macrophages without triggering oxidative or ERS. These data could partially explain the early formation of fatty streaks in the intima of human arteries by interaction of monocyte-derived macrophages with non-oxidatively aggregated LDL generating foam cells, which cannot evolve into atherosclerotic plaques in the absence of the oxidative stress.

Funder

Academia Româna

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3