The endothelial dysfunction blocker CU06-1004 ameliorates choline-deficient L-amino acid diet-induced non-alcoholic steatohepatitis in mice

Author:

Bae Cho-Rong,Zhang Haiying,Kwon Young-GuenORCID

Abstract

Non-alcoholic steatohepatitis (NASH) is a severe, advanced form of non-alcoholic fatty liver disease (NAFLD) that is associated with features of metabolic syndrome and characterized by hepatic steatosis, inflammation, and fibrosis. In addition, NASH is associated with endothelial dysfunction within the hepatic vasculature. Treatment with CU06-1004 (previously called Sac-1004) ameliorates endothelial dysfunction by inhibiting hyperpermeability and inflammation. In this study, we investigated the protective effects of CU06-1004 in a choline-deficient L-amino acid (CDAA)-induced mouse model of NASH for 3 or 6 weeks. Specifically, we evaluated the effects of CU06-1004 on lipid accumulation, inflammation, hepatic fibrosis, and liver sinusoidal endothelial cell (LSEC) capillarization through biochemical analysis, immunohistochemistry, and real-time PCR. We found that the administration of CU06-1004 to mice improved liver triglyceride (TG) and serum alanine aminotransferase (ALT) in this CDAA-induced model of NASH for 6 weeks. In groups of NASH induced mice for both 3 and 6 weeks, CU06-1004 significantly reduced the hepatic expression of genes related to lipogenesis, inflammation, and cell adhesion. However, expression of genes related to hepatic fibrosis and vascular endothelial changes were only decreased in animals with mild NASH. These results suggest that the administration of CU06-1004 suppresses hepatic steatosis, inflammation, fibrosis, and LSEC capillarization in a CDAA-induced mouse model of NASH. This suggests that CU06-1004 has therapeutic potential for the treatment of mild NASH.

Funder

National Research Foundation of Korea

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference46 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3