Time series models for prediction of leptospirosis in different climate zones in Sri Lanka

Author:

Warnasekara JanithORCID,Agampodi Suneth,Abeynayake R. Rupika

Abstract

In tropical countries such as Sri Lanka, where leptospirosis—a deadly disease with a high mortality rate—is endemic, prediction is required for public health planning and resource allocation. Routinely collected meteorological data may offer an effective means of making such predictions. This study included monthly leptospirosis and meteorological data from January 2007 to April 2019 from Sri Lanka. Factor analysis was first used with rainfall data to classify districts into meteorological zones. We used a seasonal autoregressive integrated moving average (SARIMA) model for univariate predictions and an autoregressive distributed lag (ARDL) model for multivariable analysis of leptospirosis with monthly average rainfall, temperature, relative humidity (RH), solar radiation (SR), and the number of rainy days/month (RD). Districts were classified into wet (WZ) and dry (DZ) zones, and highlands (HL) based on the factor analysis of rainfall data. The WZ had the highest leptospirosis incidence; there was no difference in the incidence between the DZ and HL. Leptospirosis was fluctuated positively with rainfall, RH and RD, whereas temperature and SR were fluctuated negatively. The best-fitted SARIMA models in the three zones were different from each other. Despite its known association, rainfall was positively significant in the WZ only at lag 5 (P = 0.03) but was negatively associated at lag 2 and 3 (P = 0.04). RD was positively associated for all three zones. Temperature was positively associated at lag 0 for the WZ and HL (P < 0.009) and was negatively associated at lag 1 for the WZ (P = 0.01). There was no association with RH in contrast to previous studies. Based on altitude and rainfall data, meteorological variables could effectively predict the incidence of leptospirosis with different models for different climatic zones. These predictive models could be effectively used in public health planning purposes.

Funder

Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka

United States Public Health Service, National Institute of Allergy and Infectious Diseases of the National Institutes of Health

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3