Composition of nanoclay supported silver nanoparticles in furtherance of mitigating cytotoxicity and genotoxicity

Author:

Chang Chih-HaoORCID,Lee Yu-Hsuan,Liao Zhen-Hao,Chen Mark Hung-Chih,Peng Fu-Chuo,Lin Jiang-Jen

Abstract

Silver nanoparticle (Ag-NP) is well known for its high antibacterial efficacy. However, its toxicity toward mammalian cells is still a concern in clinical applications. The aim of our study was to evaluate the composition effects of Ag-NP supported by silicate nanoplatelet (NSP) with respect to the cytotoxicity and genotoxicity, and was in reference to the poly (styrene-co-maleic anhydride)-supported Ag-NP (Ag-NP/SMA). The NSP at the geometric dimension of averaged 80 x 80 x 1 nm3 was prepared from the exfoliation of natural clays and used to support different weight ratio of Ag-NP. The supporting limitation of NSP on Ag-NP was below the weight ratio of 15/85 (Ag-NP to NSP), and the detached Ag-NP from the Ag-NP/NSP (30/70) and Ag-NP/SMA hybrids were observed by TEM. Ames test was performed to assess the mutagenic potential of different compositions of Ag-NP/NSP, only Ag-NP/NSP (30/70) and Ag-NP/SMA hybrids exhibited mutagenicity when the concentration was 1.09 ppm or higher. In viewing of cytotoxicity using MTT tests toward HaCaT cells, the IC30 of Ag-NP/NSP (1/99, 7/93 and 15/85) were 1416.7, 243.6, and 148.9 ppm respectively, while Ag-NP/SMA was 64.8 ppm. The IC30 of Ag-NP/NSP (1/99, 7/93 and 15/85) were at least 833, 78 and 7 folds higher than their corresponding minimum inhibitory concentrations (MIC) respectively, and whereas Ag-NP/SMA was 6.4 folds. The Ag-NP/NSP and Ag-NP/SMA hybrids had been further investigated for genotoxicity by chromosomal aberrations and in vivo micronucleus assay within the concentration at IC10 and IC30, only Ag-NP/SMA showed a higher frequency of chromosomal aberrations. Our findings indicated that the viability of utilizing the NSP to maintain Ag-NP for antimicrobial activity, and the high-surface area of NSP served as an excellent support for associating Ag-NP and consequently rendering the mitigation of the inherent toxicity of Ag-NP in clinical uses.

Funder

Ministry of Science and Technology, Taiwan

Ministry of Economic Affairs

National Taiwan University Hospital

College of Medicine, National Taiwan University

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3