Comparison of nonparametric and parametric methods for time-frequency heart rate variability analysis in a rodent model of cardiovascular disease

Author:

Wong Emily M.,Tablin Fern,Schelegle Edward S.ORCID

Abstract

The aim of time-varying heart rate variability spectral analysis is to detect and quantify changes in the heart rate variability spectrum components during nonstationary events. Of the methods available, the nonparametric short-time Fourier Transform and parametric time-varying autoregressive modeling are the most commonly employed. The current study (1) compares short-time Fourier Transform and autoregressive modeling methods influence on heart rate variability spectral characteristics over time and during an experimental ozone exposure in mature adult spontaneously hypertensive rats, (2) evaluates the agreement between short-time Fourier Transform and autoregressive modeling method results, and (3) describes the advantages and disadvantages of each method. Although similar trends were detected during ozone exposure, statistical comparisons identified significant differences between short-time Fourier Transform and autoregressive modeling analysis results. Significant differences were observed between methods for LF power (p ≤ 0.014); HF power (p ≤ 0.011); total power (p ≤ 0.027); and normalized HF power (p = 0.05). Furthermore, inconsistencies between exposure-related observations accentuated the lack of agreement between short-time Fourier Transform and autoregressive modeling overall. Thus, the short-time Fourier Transform and autoregressive modeling methods for time-varying heart rate variability analysis could not be considered interchangeable for evaluations with or without interventions that are known to affect cardio-autonomic activity.

Funder

California Air Resources Board

NIH Office of the Director

National Heart and Lung Institute

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3