Learning, exploitation and bias in games

Author:

McNamara John M.ORCID,Houston Alasdair I.,Leimar Olof

Abstract

We focus on learning during development in a group of individuals that play a competitive game with each other. The game has two actions and there is negative frequency dependence. We define the distribution of actions by group members to be an equilibrium configuration if no individual can improve its payoff by unilaterally changing its action. We show that at this equilibrium, one action is preferred in the sense that those taking the preferred action have a higher payoff than those taking the other, more prosocial, action. We explore the consequences of a simple ‘unbiased’ reinforcement learning rule during development, showing that groups reach an approximate equilibrium distribution, so that some achieve a higher payoff than others. Because there is learning, an individual’s behaviour can influence the future behaviour of others. We show that, as a consequence, there is the potential for an individual to exploit others by influencing them to be the ones to take the non-preferred action. Using an evolutionary simulation, we show that population members can avoid being exploited by over-valuing rewards obtained from the preferred option during learning, an example of a bias that is ‘rational’.

Funder

Vetenskapsrådet

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference45 articles.

1. Social Foraging Theory

2. A unified modelling approach for producer–scrounger games in complex ecological conditions;M Afshar;Animal Behaviour,2014

3. Integrating function and mechanism;JM McNamara;Trends in Ecology and Evolution,2009

4. Towards a richer evolutionary game theory;JM McNamara;J R Soc Interface,2013

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3