Regional simulation of soil organic carbon dynamics for dry farmland in Northeast China using the CENTURY model

Author:

Zhang FengORCID,Wang Shihang,Zhao Mingsong,Qin Falv,Liu Xiaoyu

Abstract

Soil organic carbon content has a significant impact on soil fertility and grain yield, making it an important factor affecting agricultural production and food security. Dry farmland, the main type of cropland in China, has a lower soil organic carbon content than that of paddy soil, and it may have a significant carbon sequestration potential. Therefore, in this study we applied the CENTURY model to explore the temporal and spatial changes of soil organic carbon (SOC) in Jilin Province from 1985 to 2015. Dry farmland soil polygons were extracted from soil and land use layers (at the 1:1,000,000 scale). Spatial overlay analysis was also used to extract 1282 soil polygons from dry farmland. Modelled results for SOC dynamics in the dry farmland, in conjunction with those from the Yushu field-validation site, indicated a good level of performance. From 1985 to 2015, soil organic carbon density (SOCD) of dry farmland decreased from 34.36 Mg C ha−1 to 33.50 Mg C ha−1 in general, having a rate of deterioration of 0.03 Mg C ha−1 per year. Also, SOC loss was 4.89 Tg from dry farmland soils in the province, with a deterioration rate of 0.16 Tg C per year. 35.96% of the dry farmland its SOCD increased but 64.04% of the area released carbon. Moreover, SOC dynamics recorded significant differences between different soil groups. The method of coupling the CENTURY model with a detailed soil database can simulate temporal and spatial variations of SOC at a regional scale, and it can be used as a precise simulation method for dry farmland SOC dynamics.

Funder

National Natural Science Foundation of China

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference33 articles.

1. Transformation and distribution of straw-derived carbon in soil and the effects on soil organic carbon pool: A review;YH Yang;Chin. J. Appl. Ecol,2019

2. Amounts dynamics and sequestering of carbon in tropical and subtropical soils;WG Sombroek;AMBIO,1993

3. Distribution and storage of soil organic carbon in a coastal wetland under the pressure of human activities;Q Wang;J. Soils Sediments,2016

4. Review of the factors influencing soil organic carbon stability;J Xu;Chin. J. Eco-Agric,2018

5. Dynamic change of organic carbon in black soil in northeast China using CENTURY model I. accumulation of soil organic carbon under natural conditions;LP Gao;Chin. J. Appl. Ecol,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3