Relative snowpack response to elevation, temperature and precipitation in the Crown of the Continent region of North America 1980-2013

Author:

Broberg LenORCID

Abstract

Water availability in western Canada and the United States is dependent on the accumulation of snowpack in the montane regions and threatened by increased winter temperature and more precipitation as rain linked to climate change. In order to make reasoned decisions to adapt to climate change managers require knowledge of the role of temperature and precipitation in SWE development and data to distinguish the relative retention response of snowpack regions to expected temperature and precipitation regime shifts at the watershed scale. Using the Daymet interpolated 1 km2 dataset, effects of elevation, temperature (Tmax, Tmin and Tavg) and precipitation on April 1 SWE in the Crown of the Continent were tested by linear regression and Kendall correlation. Changes in Daymet estimated snow water equivalent (SWE) in response to increased temperatures and changes in precipitation were estimated in two ways: 1) comparing April 1SWE in the 11 warmest (mean Tmax February) and driest (mean precipitation January to March) years with the 22 cooler/wetter years 1981–2013 and 2) SWE retention from April 1 to June 1 over the period 1980 to 2013 across 120 watersheds in a major continental headwater region, the Crown of the Continent of North America. Historical analysis of period warm year April 1 SWE was assumed to indicate the recent impact of warmer winter temperatures. Changes in snowpack April 1 to June 1 reflected likely effects on peak runoff and were, therefore, also relevant for future climate change adaptation considerations. Winter (JFM) precipitation proved more influential than temperature in shaping April 1 SWE response at the regional scale. Of the three factors, elevation was most positively associated with April 1 SWE at the watershed scale. Temperature and precipitation influenced SWE accumulation and persistence at the watershed scale, but higher precipitation was more closely associated with higher April 1 SWE retention. Ranking of watershed snowpack retention in warm and dry years, combined with spring snowpack retention offers data to assist identification of watersheds with greatest snowpack persistence in the face of anticipated climate change effects.

Funder

Division of Industrial Innovation and Partnerships

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3