Author:
Tang Guiying,Xu Pingli,Li Pengxiang,Zhu Jieqiong,Chen Guangxia,Shan Lei,Wan Shubo
Abstract
LEAFY COTYLEDON1 (LEC1) is a HAP3 subunit of CCAAT-binding transcription factor, which controls several aspects of embryo and postembryo development, including embryo morphogenesis, storage reserve accumulation and skotomorphogenesis. Herein, using the method of chromosomal walking, a 2707bp upstream sequence from the ATG initiation codon site of AhLEC1A which is a homolog of Arabidopsis LEC1 was isolated in peanut. Its transcriptional start site confirmed by 5’ RACE was located at 82 nt from 5’ upstream of ATG. The bioinformatics analysis revealed that there existed many tissue-specific elements and light responsive motifs in its promoter. To identify the functional region of the AhLEC1A promoter, seven plant expression vectors expressing the GUS (β-glucuronidase) gene, driven by 5’ terminal series deleted fragments of AhLEC1A promoter, were constructed and transformed into Arabidopsis. Results of GUS histochemical staining showed that the regulatory region containing 82bp of 5’ UTR and 2228bp promoter could facilitate GUS to express preferentially in the embryos at different development periods of Arabidopsis. Taken together, it was inferred that the expression of AhLEC1A during seed development of peanut might be controlled positively by several seed-specific regulatory elements, as well as negatively by some other regulatory elements inhibiting its expression in other organs. Moreover, the GUS expression pattern of transgenic seedlings in darkness and in light was relevant to the light-responsive elements scattered in AhLEC1A promoter segment, implying that these light-responsive elements harbored in the AhLEC1A promoter regulate skotomorphogenesis of peanut seeds, and AhLEC1A expression was inhibited after the germinated seedlings were transferred from darkness to light.
Funder
the National Key R&D Program of China
the Major Basic Research Project of Natural Science Foundation of Shandong Province
Publisher
Public Library of Science (PLoS)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献