Alignment-free method for functional annotation of amino acid substitutions: Application on epigenetic factors involved in hematologic malignancies

Author:

Gemović BranislavaORCID,Perović Vladimir,Davidović Radoslav,Drljača Tamara,Veljkovic Nevena

Abstract

For the last couple of decades, there has been a significant growth in sequencing data, leading to an extraordinary increase in the number of gene variants. This places a challenge on the bioinformatics research community to develop and improve computational tools for functional annotation of new variants. Genes coding for epigenetic regulators have important roles in cancer pathogenesis and mutations in these genes show great potential as clinical biomarkers, especially in hematologic malignancies. Therefore, we developed a model that specifically focuses on these genes, with an assumption that it would outperform general models in predicting the functional effects of amino acid substitutions. EpiMut is a standalone software that implements a sequence based alignment-free method. We applied a two-step approach for generating sequence based features, relying on the biophysical and biochemical indices of amino acids and the Fourier Transform as a sequence transformation method. For each gene in the dataset, the machine learning algorithm–Naïve Bayes was used for building a model for prediction of the neutral or disease-related status of variants. EpiMut outperformed state-of-the-art tools used for comparison, PolyPhen-2, SIFT and SNAP2. Additionally, EpiMut showed the highest performance on the subset of variants positioned outside conserved functional domains of analysed proteins, which represents an important group of cancer-related variants. These results imply that EpiMut can be applied as a first choice tool in research of the impact of gene variants in epigenetic regulators, especially in the light of the biomarker role in hematologic malignancies. EpiMut is freely available at https://www.vin.bg.ac.rs/180/tools/epimut.php.

Funder

Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3