In vitro comparison of performance including imposed work of breathing of CPAP systems used in low-resource settings

Author:

Heenan Megan,Rojas Jose D.,Oden Z. Maria,Richards-Kortum RebeccaORCID

Abstract

Respiratory distress due to preterm birth is a significant cause of death in low-resource settings. The introduction of continuous positive airway pressure (CPAP) systems to treat respiratory distress significantly reduced mortality in high-resource settings, but CPAP was only recently introduced in low-resource settings due to cost and infrastructure limitations. We evaluated pressure stability and imposed work of breathing (iWOB) of five CPAP systems used in low resource settings: the Fisher and Paykel bubble CPAP, the Diamedica baby CPAP, the Medijet nCPAP generator, and the first (2015) and second (2017) generation commercially available Pumani CPAPs. Pressure changes due to fresh gas flow were evaluated for each system by examining the relationship between flow and pressure at the patient interface for four pressures generated at the bottle (0, 3, 5, and 7 cm H2O); for the Medijet nCPAP generator, no bottle was used. The slope of the resulting relationship was used to calculate system resistance. Poiseuille’s law of resistance was used to investigate significant contributors to resistance. Resistance ranged from 0.05 to 1.40 cmH2OL/min; three CPAP devices had resistances < 0.4 cmH2OL/min: the Fisher and Paykel system, the Diamedica system, and the second generation Pumani bubble CPAP. The other two systems, the Medijet nCPAP generator and the first generation Pumani bCPAP, had resistances >1.0 cmH2OL/min. Imposed WOB was measured using an ASL5000 test lung to simulate the breath cycle for an infant (5.5 kg), a term neonate (4.0 kg), and a preterm neonate (2.5 kg). Imposed WOB ranged from 1.4 to 39.5 mJ/breath across all systems and simulated infant sizes. Changes in pressure generated by fresh gas flow, resistance, and iWOB differ between the five systems evaluated under ideal laboratory conditions. The available literature does not indicate that these differences affect clinical outcomes.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference32 articles.

1. Neonatal cause-of-death estimates for the early and late neonatal periods for 194 countries: 2000–2013;S Oza;Bulletin World Health Organization,2015

2. Neonatal respiratory distress in a reference neonatal unit in Cameroon: an analysis of prevalence, predictors, etiologies and outcomes;JN Tochie;The Pan African Medical Journal,2016

3. Major causes of death in preterm infants in selected hospitals in Ethiopia (SIP): a prospective, cross-sectional, observational study;LM Muhe;Lancet Global Health,2019

4. WHO recommendations on newborn health: guidelines approved by the WHO Guidelines Review Committee. World Health Organization; 2017.

5. European Consensus Guidelines on the Management of Respiratory Distress Syndrome—2019 Update;DJ Sweet;Neonatology,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3