Characterization of a broadly specific cadaverine N-hydroxylase involved in desferrioxamine B biosynthesis in Streptomyces sviceus

Author:

Giddings Lesley-AnnORCID,Lountos George T.ORCID,Kim Kang Woo,Brockley Matthew,Needle Danielle,Cherry Scott,Tropea Joseph E.,Waugh David S.

Abstract

N-hydroxylating flavin-dependent monooxygenases (FMOs) are involved in the biosynthesis of hydroxamate siderophores, playing a key role in microbial virulence. Herein, we report the first structural and kinetic characterization of a novel alkyl diamine N-hydroxylase DesB from Streptomyces sviceus (SsDesB). This enzyme catalyzes the first committed step in the biosynthesis of desferrioxamine B, a clinical drug used to treat iron overload disorders. X-ray crystal structures of the SsDesB holoenzyme with FAD and the ternary complex with bound NADP+ were solved at 2.86 Å and 2.37 Å resolution, respectively, providing a structural view of the active site environment. SsDesB crystallized as a tetramer and the structure of the individual protomers closely resembles the structures of homologous N-hydroxylating FMOs from Erwinia amylovora (DfoA), Pseudomonas aeruginosa (PvdA), and Aspergillus fumigatus (SidA). Using NADPH oxidation, oxygen consumption, and product formation assays, kinetic parameters were determined for various substrates with SsDesB. SsDesB exhibited typical saturation kinetics with substrate inhibition at high concentrations of NAD(P)H as well as cadaverine. The apparent kcat values for NADPH in steady-state NADPH oxidation and oxygen consumption assays were 0.28 ± 0.01 s-1 and 0.24 ± 0.01 s-1, respectively. However, in product formation assays used to measure the rate of N-hydroxylation, the apparent kcat for NADPH (0.034 ± 0.008 s-1) was almost 10-fold lower under saturating FAD and cadaverine concentrations, reflecting an uncoupled reaction, and the apparent NADPH KM was 33 ± 24 μM. Under saturating FAD and NADPH concentrations, the apparent kcat and KM for cadaverine in Csaky assays were 0.048 ± 0.004 s-1 and 19 ± 9 μM, respectively. SsDesB also N-hydroxylated putrescine, spermidine, and L-lysine substrates but not alkyl (di)amines that were branched or had fewer than four methylene units in an alkyl chain. These data demonstrate that SsDesB has wider substrate scope compared to other well-studied ornithine and lysine N-hydroxylases, making it an amenable biocatalyst for the production of desferrioxamine B, derivatives, and other N-substituted products.

Funder

Frederick National Laboratory for Cancer Research

National Institute of General Medical Sciences

NIH Intramural Research Program

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3