A deep learning-based method for grip strength prediction: Comparison of multilayer perceptron and polynomial regression approaches

Author:

Hwang Jaejin,Lee JinwonORCID,Lee Kyung-SunORCID

Abstract

The objective of this study was to accurately predict the grip strength using a deep learning-based method (e.g., multi-layer perceptron [MLP] regression). The maximal grip strength with varying postures (upper arm, forearm, and lower body) of 164 young adults (100 males and 64 females) were collected. The data set was divided into a training set (90% of data) and a test set (10% of data). Different combinations of variables including demographic and anthropometric information of individual participants and postures was tested and compared to find the most predictive model. The MLP regression and 3 different polynomial regressions (linear, quadratic, and cubic) were conducted and the performance of regression was compared. The results showed that including all variables showed better performance than other combinations of variables. In general, MLP regression showed higher performance than polynomial regressions. Especially, MLP regression considering all variables achieved the highest performance of grip strength prediction (RMSE = 69.01N, R = 0.88, ICC = 0.92). This deep learning-based regression (MLP) would be useful to predict on-site- and individual-specific grip strength in the workspace to reduce the risk of musculoskeletal disorders in the upper extremity.

Funder

National Research Foundation of Korea

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3