Soil bacterial communities and their associated functions for forest restoration on a limestone mine in northern Thailand

Author:

Sansupa Chakriya,Purahong WitoonORCID,Wubet Tesfaye,Tiansawat Pimonrat,Pathom-Aree Wasu,Teaumroong Neung,Chantawannakul Panuwan,Buscot François,Elliott Stephen,Disayathanoowat TerdORCID

Abstract

Opencast mining removes topsoil and associated bacterial communities that play crucial roles in soil ecosystem functioning. Understanding the community composition and functioning of these organisms may lead to improve mine-rehabilitation practices. We used a culture-dependent method, combined with Illumina sequencing, to compare the taxonomic richness and composition of living bacterial communities in opencast mine substrates and young mine-rehabilitation plots, with those of soil in adjacent remnant forest at a limestone mine in northern Thailand. We further investigated the effects of soil physico-chemical factors and ground-flora cover on the same. Although, loosened subsoil, brought in to initiate rehabilitation, improved water retention and facilitated plant re-establishment, it did not increase the population density of living microbes substantially within 9 months. Planted trees and sparse ground flora in young rehabilitation plots had not ameliorated the micro-habitat enough to change the taxonomic composition of the soil bacteria compared with non-rehabilitated mine sites. Viable microbes were significantly more abundant in forest soil than in mine substrates. The living bacterial community composition differed significantly, between the forest plots and both the mine and rehabilitation plots. Proteobacteria dominated in forest soil, whereas Firmicutes dominated in samples from both mine and rehabilitation plots. Although, several bacterial taxa could survive in the mine substrate, soil ecosystem functions were greatly reduced. Bacteria, capable of chitinolysis, aromatic compound degradation, ammonification and nitrate reduction were all absent or rare in the mine substrate. Functional redundancy of the bacterial communities in both mine substrate and young mine-rehabilitation soil was substantially reduced, compared with that of forest soil. Promoting the recovery of microbial biomass and functional diversity, early during mine rehabilitation, is recommended, to accelerate soil ecosystem restoration and support vegetation recovery. Moreover, if inoculation is included in mine rehabilitation programs, the genera: Bacillus, Streptomyces and Arthrobacter are likely to be of particular interest, since these genera can be cultivated easily and this study showed that they can survive under the extreme conditions that prevail on opencast mines.

Funder

Siam Cement (Lampang) Co., Ltd

Chiang Mai University

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference66 articles.

1. Surface mining technology: Progress and prospects;RV Ramani;Procedia Eng,2012

2. Environmental impact assessment of open pit mining in Iran;M Monjezi;Environ Geol,2009

3. Environmental impact of coal mine methane emissions and responding strategies in China;Y-P Cheng;Int J Greenh Gas Control,2011

4. Environmental impact of coal mining on water regime and its management;RK Tiwary;Water Air Soil Pollut,2001

5. Restoration of degraded landscapes: Principles and lessons from case studies with salt-affected land and mine revegetation;RW Bell;CMUJ,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3