Abstract
Maize, Zea mays L., is the most abundant field crop in China. Aphids are the most economically damaging pest on maize, particularly in the maize agri-ecosystems of Jilin Province, northeastern China. Parasitic wasps are important natural enemies of aphids, but limited information exists about their species composition, richness and seasonal dynamics in northeastern China. In this study, the population dynamics of maize aphids and parasitoid wasps were assessed in relation to each other during the summer seasons of two consecutive years, 2018 and 2019. We selected maize fields in the Changchun, Songyuan, Huinan and Gongzhuling areas of Jilin Province. Four species of aphids were recorded from these maize fields: Rhopalosiphum padi (L), Rhopalosiphum maidis (Fitch), Aphis gossypii Glover and Macrosiphum miscanthi (Takahashi). The dominant species in each of the four areas were R. maids (Filch) and R. padi in Changchun, R. padi in Songyuan, A. gossypii and R. padi in Huinan, and A.gossypii and R. padi in Gongzhuling. We delineated a species complex made up of primary parasitoids and hyperparasitoids associated with maize aphids. The primary parasitoids Lysiphlebus testaceipes, Binodoxys communis and Aphelinus albipodus together formed approximately 85.3% of the parasitoid complex. Pachyneuron aphidis, Phaenoglyphis villosa, Syrphophagus taeniatus and Asaphes suspensus made up the hyperparasitoids. Of the primary parasitoids, L. testaceipes was the dominant species (81.31%). Of the hyperparasitoid group, P. villosa was the dominant species (68.42%). Parasitism rates followed the fluctuation of the aphid population. The highest parasitic rate was observed during the peak period of cotton aphids. In this paper, the occurrence dynamics and dominant species of aphids and the dynamics of parasitic natural enemies of aphids in maize fields in Jilin Province are, for the first time, systematically reported. This study provides important information for the establishment and promotion of aphid biological control in maize fields.
Publisher
Public Library of Science (PLoS)
Reference39 articles.
1. Land use, land-use change, and forestry;RT Watson;A Special Report of the Ipcc,2000
2. Viewing agricultural water management through a systems analysis lens;T Zhu;Water Resources Research,2019
3. K. Comprehensive control technology of Rhopalosiphum maidis;L Huang W;Bulletin of Agricultural Science and Technology,1997
4. Spatial dynamics of Rhopalosiphum maidis population;Y Wang;Journal of Northwest A & F University,2002
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献