A low-altitude public air route network for UAV management constructed by global subdivision grids

Author:

Zhai WeixinORCID,Han Bing,Li Dong,Duan Jiexiong,Cheng Chengqi

Abstract

With an increasing number of unmanned aerial vehicles (UAVs), the difficulty of UAV management becomes more challenging, especially for low-altitude airspace due to complicated issues of security, privacy and flexibility. Existing management approaches to UAV flights include implementing registration of flight activity for supervision purposes, limiting the maximum flight height, setting different zones for different flight activities and prohibiting flights. In this research, we proposed a new air traffic management method for UAVs based on global subdivision theory. We designed four types of low-altitude air routes from grids, which correspond to grid sizes of 1.85 km, 128 m, 64 m and 32 m. Utilization of the subdivision grids transforms the complex spatial computation problem into a query process in the spatial database, which provides a new approach to UAV management in the fifth-generation (5G) era. We compared the number and data size of stored track records using longitude and latitude and different grid levels, computed time consumption for air route trafficability and simulated UAV flight to verify the feasibility of constructing this type of air traffic highway system. The amount of data storage and time consumption for air route trafficability can be substantially reduced by subdivision. For example, the data size using traditional expressions of latitude and longitude is approximately 1.5 times that of using a 21-level grid, and the time consumption by coordinates is approximately 1.5 times that of subdivision grids at level 21. The results of the simulated experiments indicate that in the 5G environment, gridded airspace can effectively improve the efficiency of UAV trajectory planning and reduce the size of information storage in the airspace environment. Therefore, given the increasing number of UAVs in the future, gridded highways have the potential to provide a foundation for various UAV applications.

Funder

National Key Research and Development Projects

Pilot Project of Digital Agriculture Construction of National High Quality Cotton For Shihezi Farm

Postdoctoral Science Foundation of Jiangsu Province

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference53 articles.

1. A flexible unmanned aerial vehicle for precision agriculture.;J Primicerio;Precis Agric,2012

2. Estimation of free-roaming domestic dog population size: Investigation of three methods including an Unmanned Aerial Vehicle (UAV) based approach.;C Warembourg;PLoS One.,2020

3. UAV Cluster-Based Video Surveillance System Optimization in Heterogeneous Communication of Smart Cities.;Y Jin;IEEE Access.,2020

4. Flying into the hurricane: A case study of UAV use in damage assessment during the 2017 hurricanes in Texas and Florida.;F Greenwood;PLoS One.,2020

5. UAV assisted heterogeneous networks for public safety communications.;A Merwaday;2015 IEEE Wirel Commun Netw Conf Work WCNCW 2015.,2015

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3