Abstract
Behavioral thermoregulation is an important defense against the negative impacts of climate change for ectotherms. In this study we examined the use of burrows by a common intertidal crab, Minuca pugnax, to control body temperature. To understand how body temperatures respond to changes in the surface temperature and explore how efficiently crabs exploit the cooling potential of burrows to thermoregulate, we measured body, surface, and burrow temperatures during low tide on Sapelo Island, GA in March, May, August, and September of 2019. We found that an increase in 1°C in the surface temperature led to a 0.70-0.71°C increase in body temperature for females and an increase in 0.75-0.77°C in body temperature for males. Body temperatures of small females were 0.3°C warmer than large females for the same surface temperature. Female crabs used burrows more efficiently for thermoregulation compared to the males. Specifically, an increase of 1°C in the cooling capacity (the difference between the burrow temperature and the surface temperature) led to an increase of 0.42-0.50°C for females and 0.34-0.35°C for males in the thermoregulation capacity (the difference between body temperature and surface temperature). The body temperature that crabs began to use burrows to thermoregulate was estimated to be around 24°C, which is far below the critical body temperatures that could lead to death. Many crabs experience body temperatures of 24°C early in the reproductive season, several months before the hottest days of the year. Because the use of burrows involves fitness trade-offs, these results suggest that warming temperatures could begin to impact crabs far earlier in the year than expected.
Funder
National Science Foundation
Publisher
Public Library of Science (PLoS)
Reference76 articles.
1. Pörtner HO, Roberts DC, Masson-Delmotte V, Zhai P, Tignor M, Poloczanska E, et al. IPCC, 2019: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; In Press. Available from: https://www.ipcc.ch/srocc/.
2. Evolution of Thermal Sensitivity of Ectotherm Performance;RB Huey;Trends in Ecology & Evolution,1989
3. Specialists and Generalists in Changing Environments. 1. Fitness Landscapes of Thermal Sensitivity;GW Gilchrist;American Naturalist,1995
4. Is physiological performance optimized by thermoregulatory behavior?: a case study of the eastern fence lizard, Sceloporus undulatus;MJ Angilletta;Journal of Thermal Biology,2002
5. Heatwaves diminish the survival of a subtidal gastropod through reduction in energy budget and depletion of energy reserves;JYS Leung;Scientific reports,2017
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献