ReCiter: An open source, identity-driven, authorship prediction algorithm optimized for academic institutions

Author:

Albert Paul J.ORCID,Dutta SarbajitORCID,Lin Jie,Zhu Zimeng,Bales MichaelORCID,Johnson Stephen B.,Mansour Mohammad,Wright Drew,Wheeler Terrie R.,Cole Curtis L.

Abstract

Academic institutions need to maintain publication lists for thousands of faculty and other scholars. Automated tools are essential to minimize the need for direct feedback from the scholars themselves who are practically unable to commit necessary effort to keep the data accurate. In relying exclusively on clustering techniques, author disambiguation applications fail to satisfy key use cases of academic institutions. Algorithms can perfectly group together a set of publications authored by a common individual, but, for them to be useful to an academic institution, they need to programmatically and recurrently map articles to thousands of scholars of interest en masse. Consistent with a savvy librarian’s approach for generating a scholar’s list of publications, identity-driven authorship prediction is the process of using information about a scholar to quantify the likelihood that person wrote certain articles. ReCiter is an application that attempts to do exactly that. ReCiter uses institutionally-maintained identity data such as name of department and year of terminal degree to predict which articles a given scholar has authored. To compute the overall score for a given candidate article from PubMed (and, optionally, Scopus), ReCiter uses: up to 12 types of commonly available, identity data; whether other members of a cluster have been accepted or rejected by a user; and the average score of a cluster. In addition, ReCiter provides scoring and qualitative evidence supporting why particular articles are suggested. This context and confidence scoring allows curators to more accurately provide feedback on behalf of scholars. To help users to more efficiently curate publication lists, we used a support vector machine analysis to optimize the scoring of the ReCiter algorithm. In our analysis of a diverse test group of 500 scholars at an academic private medical center, ReCiter correctly predicted 98% of their publications in PubMed.

Funder

National Center For Advancing Translational Sciences

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference33 articles.

1. Giles CL, Zha H, Han H. Name disambiguation in author citations using a k-way spectral clustering method. Proceedings of the 5th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL ‘05). 2005;

2. Author name disambiguation for pubmed.;W Liu;J Assoc Inf Sci Technol,2014

3. Han H, Giles L, Zha H, Li C, Tsioutsiouliklis K. Two supervised learning approaches for name disambiguation in author citations. Proceedings of the 2004 joint ACM/IEEE conference on Digital libraries—JCDL ‘04. New York, New York, USA: ACM Press; 2004. p. 296. doi: 10.1145/996350.996419

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3