Abstract
Aiming at the situation that the existing visible and infrared images fusion algorithms only focus on highlighting infrared targets and neglect the performance of image details, and cannot take into account the characteristics of infrared and visible images, this paper proposes an image enhancement fusion algorithm combining Karhunen-Loeve transform and Laplacian pyramid fusion. The detail layer of the source image is obtained by anisotropic diffusion to get more abundant texture information. The infrared images adopt adaptive histogram partition and brightness correction enhancement algorithm to highlight thermal radiation targets. A novel power function enhancement algorithm that simulates illumination is proposed for visible images to improve the contrast of visible images and facilitate human observation. In order to improve the fusion quality of images, the source image and the enhanced images are transformed by Karhunen-Loeve to form new visible and infrared images. Laplacian pyramid fusion is performed on the new visible and infrared images, and superimposed with the detail layer images to obtain the fusion result. Experimental results show that the method in this paper is superior to several representative image fusion algorithms in subjective visual effects on public data sets. In terms of objective evaluation, the fusion result performed well on the 8 evaluation indicators, and its own quality was high.
Funder
Science and Technology Department Project of Sichuan Provincial of China
Publisher
Public Library of Science (PLoS)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献