From cockroaches to tanks: The same power-mass-speed relation describes both biological and artificial ground-mobile systems

Author:

Kott AlexanderORCID,Gart Sean,Pusey Jason

Abstract

This paper explores whether artificial ground-mobile systems exhibit a consistent regularity of relation among mass, power, and speed, similar to that which exists for biological organisms. To this end, we investigate an empirical allometric formula proposed in the 1980s for estimating the mechanical power expended by an organism of a given mass to move at a given speed, applicable over several orders of magnitude of mass, for a broad range of species, to determine if a comparable regularity applies to a range of vehicles. We show empirically that not only does a similar regularity apply to a wide variety of mobile systems; moreover, the formula is essentially the same, describing organisms and systems ranging from a roach (1 g) to a battle tank (35,000 kg). We also show that for very heavy vehicles (35,000–100,000,000 kg), the formula takes a qualitatively different form. These findings point to a fundamental similarity between biological and artificial locomotion that transcends great differences in morphology, mechanisms, materials, and behaviors. To illustrate the utility of this allometric relation, we investigate the significant extent to which ground robotic systems exhibit a higher cost of transport than either organisms or conventional vehicles, and discuss ways to overcome inefficiencies.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The physics of the urge to have freedom;BioSystems;2024-09

2. Animal design advantage from the analogy between friction and body heat loss;Biosystems;2024-01

3. Locomotion rhythm makes power and speed;Scientific Reports;2023-08-28

4. The principle underlying all evolution, biological, geophysical, social and technological;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-06-19

5. Evolution, physics, and education;Biosystems;2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3