Decontamination of N95 and surgical masks using a treatment based on a continuous gas phase-Advanced Oxidation Process

Author:

Hasani Mahdiyeh,Campbell Tracey,Wu Fan,Warriner KeithORCID

Abstract

A gas-phase Advanced Oxidation Process (gAOP) was evaluated for decontaminating N95 and surgical masks. The continuous process was based on the generation of hydroxyl-radicals via the UV-C (254 nm) photo-degradation of hydrogen peroxide and ozone. The decontamination efficacy of the gAOP was dependent on the orientation of the N95 mask passing through the gAOP unit with those positioned horizontally enabling greater exposure to hydroxyl-radicals compared to when arranged vertically. The lethality of gAOP was independent of the applied hydrogen peroxide concentration (2–6% v/v) but was significantly (P<0.05) higher when H2O2 was introduced into the unit at 40 ml/min compared to 20 ml/min. A suitable treatment for N95 masks was identified as 3% v/v hydrogen peroxide delivered into the gAOP reactor at 40 ml/min with continuous introduction of ozone gas and a UV-C dose of 113 mJ/cm2 (30 s processing time). The treatment supported >6 log CFU decrease in Geobacillus stearothermophilus endospores, > 8 log reduction of human coronavirus 229E, and no detection of Escherichia coli K12 on the interior and exterior of masks. There was no negative effect on the N95 mask fitting or particulate efficacy after 20 passes through the gAOP system. No visual changes or hydrogen peroxide residues were detected (<1 ppm) in gAOP treated masks. The optimized gAOP treatment could also support >6 log CFU reduction of endospores inoculated on the interior or exterior of surgical masks. G. stearothermophilus Apex spore strips could be applied as a biological indicator to verify the performance of gAOP treatment. Also, a chemical indicator based on the oxidative polymerization of pyrrole was found suitable for reporting the generation of hydroxyl-radicals. In conclusion, gAOP is a verifiable treatment that can be applied to decontaminate N95 and surgical masks without any negative effects on functionality.

Funder

University of Guelph

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference34 articles.

1. The COVID-19 pandemic, personal protective equipment and respirator: A narrative review;JF Ha;International Journal of Clinical Practice,2020

2. Challenges and solutions for addressing critical shortage of supply chain for personal and protective equipment (PPE) arising from Coronavirus disease (COVID19) pandemic—Case study from the Republic of Ireland;NJ Rowan;Science of the Total Environment,2020

3. Availability of Personal Protective Equipment (PPE) Among US and Pakistani Doctors in COVID-19 Pandemic;J Ahmed;Cureus,2020

4. A rapid systematic review of the efficacy of face masks and respirators against coronaviruses and other respiratory transmissible viruses for the community, healthcare workers and sick patients;CR MacIntyre;International Journal of Nursing Studies,2020

5. Disposable masks: Disinfection and sterilization for reuse, and non-certified manufacturing, in the face of shortages during the COVID-19 pandemic;JC Rubio-Romero;Safety Science,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3